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In this paper, a Franck-Condon simulation of the S1 f S0 transition of phenol is given including all normal
modes. The geometries of phenol in its S0 and S1 states are obtained from CASSCF calculations. The calculated
scaled harmonic frequencies are in good agreement with the experimental values. To calculate the Franck-
Condon factors, Duschinsky rotations between the S0 and S1 states are taken into account. A very strong
Duschinsky rotation is observed between modes 1 and 18a and modes 9b, 14, and the OH-bending vibration.
To get good agreement between experimental and theoretical intensities, the calculated geometry of the S1

state is fitted by reducing the C-O bond length and elongating the molecule along mode 6a. Thus, the most
significant changes in geometry in the S1 state can be deduced from the experimentally observed intensity
pattern. The program developed to calculate the Franck-Condon factors is described and tested for the well-
known spectrum of the benzene molecule. It is shown how the use of a hash table reduces storage space
which is necessary for a multidimensional Franck-Condon analysis of large molecules.

I. Introduction

The relative intensities of vibronic bands in the electronic
transitions of molecules is governed by the Franck-Condon
(FC) principle.1-2 Under the assumptions that the Born-
Oppenheimer approximation3 is valid and that the electronic
transition moment varies only slowly with the internuclear
distances, the probability of a vibronic transition is proportional
to the square of the vibrational overlap integral between the
initial and final states. These values are commonly known as
Franck-Condon factors. To calculate the overlap integrals for
polyatomic molecules, the normal modes of the final state have
to be expressed in terms of the normal modes of the initial state.
This problem has been qualitatively discussed by Duschinsky.4

In this theoretical framework, the geometries and normal modes
of a molecule in both electronic states are all that is needed to
calculate the relative intensity distribution of a vibronic transi-
tion. Because of the development of methods such as the
quantum consistent force field QCFF/PI of Warshel and
Karplus5 and ab initio techniques such as CIS6 and CASSCF,7

geometries and normal modes of small to medium size
molecules in different electronic states can now be calculated
routinely. On the basis of these methods, numerous applications
of FC calculations have been presented in the literature.8-23 Most
of these studies just focus on the interpretation of experimentally
known spectra. Because the geometry difference between two
electronic states is a major factor that influences FC intensities,
the simulation of vibronic spectra of polyatomic molecules can
be regarded as a valuable test with respect to the quality of
calculated geometries and as a starting point to obtain improved
structures.

In this paper, a program is presented to calculate multidi-
mensional Franck-Condon integrals and the application to the
dispersed fluorescence spectrum of phenol (S1 f S0 transition)24

is given. As test case for our Franck-Condon program, the
simulation of the direct absorption spectrum of benzene25,26has
been chosen.

II. Calculation of Franck -Condon Integrals

Different methods23,27-32 have been proposed to calculate
multidimensional Franck-Condon integrals. We chose the
recursion relations of Doctorov, Malkin, and Manko,28 which
are exact in the harmonic approximation, to calculate the FC
integrals of the S1 f S0 vibronic transitions of phenol. To our
knowledge, Gruner et al.8-11 were the first to apply this method
to the spectra of larger molecules. Callis et al.12,13 used the
recursion relations to calculate the fluorescence spectra of indole.
The derivation of the general expressions for the multidimen-
sional FC integrals can be found either in the original work of
Doctorov et al.28 or in a recent paper of Berger et al.,14 who
analyzed the hot-band spectra of benzene and pyrazine. In this
paper, only a brief overview of the equations involved in the
calculation is given.

The harmonic vibrational eigenfunction of ann-atomic
molecule can be specified by a set ofN ) 3n - 6 vibrational
quantum numbersυi: |υj〉 ) |υ1, υ2, ... υN〉. The frequency
associated with the normal coordinateqi is denotedωi. The
transformation between the normal coordinates of the two
electronic states is given by4,28,29

The vectord describes a translation in the 3n-dimensional
coordinate space of the molecule, and the orthogonal matrixS
defines a rotation in the normal coordinate space. The translation
vector and the rotation matrix can be calculated from the normal
coordinates and the equilibrium Cartesian configurationreq in
the different electronic states:8-10,29

In eq 2,L is a matrix that contains the mass-weighted Cartesian
normal coordinates as columns andM is a diagonal matrix of
the atomic masses. It should be noted that a proper coordinate

q′′i ) ∑
k

Sikq′k + di (1)

S ) (L ′′)-1L ′ d ) (L ′′)-1M1/2(r′′eq - r′eq) (2)
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system must be chosen to describe the geometry of the initial
and final electronic states.33,34 According to Doctorov et al.,28

the following matrixes are needed for the recursion relations:

The tilde in eq 3 denotes the transpose matrix. Using the
definition given in eqs 1-3, the recursion relations for emission
and absorption are

and

Before eqs 4 and 5 can be used to calculate FC factors, the
overlap integral of the electronic origin has to be calculated
explicitly by

Different algorithms have been proposed in the literature8,14 to
implement eqs 4 and 5 efficiently. Our own solution to this
problem is explained in the appendix of this paper.

III. Geometries and Excitation Energies

CASSCF calculations have been performed for the S0 and
S1 states of benzene and phenol using the Gaussian 94 and 9835

programs. The CASSCF method is the best available method
which can be applied to both the S0 and S1 states. By using the
same method for the two electronic states, no artificial Duschin-

sky rotations of normal modes are obtained, which arise only
from the application of different ab initio methods to describe
the two states.

For the CASSCF calculations of benzene, an active space of
the six π-orbitals of the aromatic ring has been chosen. The
active space used for phenol was chosen by analogy to a
previously published study36 and consists of the sixπ-valence
orbitals of the aromatic ring and the oxygen lone pair orbital
which hasπ-symmetry. The active spaces of benzene and phenol
are abbreviated as CAS(6,6) and CAS(8,7), respectively. For
all calculations, the correlation consistent cc-pVDZ basis set37

is used.
The rotational constants calculated for the S0 and S1 states

of phenol are compared to the experimental values of Larsen38

and Berden et al.39 in Table 1. The geometry of the phenol
molecule (cf. Figure 1) has been restricted toCs symmetry. The
calculated bond lengths and bond angles have been published
in an earlier work.36 The deviations between calculated and
experimentally observed bond lengths and bond angles of the
S0 state are less than 0.01 Å and 1°, respectively. Only the C1-O
bond length and the C1-O-H1 bond angle (Figure 1) show
slightly larger deviations (0.019 Å and 1.9°). Thus, the rotational
constants obtained for the S0 state are in very good agreement
with the experimental values. Compared to the S0 state, a larger
deviation between the experimentally observed and calculated
rotational constants is obtained for the S1 state. This results
mainly from the C-O bond length which is underestimated in
the CASSCF calculations. A significant shortening of the C-O
bond length of about 0.1 Å is predicted from high-resolution
fluorescence excitation experiments, whereas only a small
shortening (0.01 Å) is predicted by the CASSCF calculations.
The C-O bond length is important in the discussion of the FC
simulations. We demonstrate that the result of the simulation
can be improved considerably by a small adjustment of the
CASSCF geometry of the S1 state (see section VI). The
rotational constants of the fitted geometry are given in Table 1.
These values show only small deviations from the experimen-
tally obtained rotational constants.

TABLE 1: Rotational Constants of Phenol in Its Electronic Ground State and the First Excited Statec

S0 S1

A′′ B′′ C′′ A′ B′ C′
experiment 5650.515a 2619.236a 1789.855a 5313.6b 2620.5b 1756.1b

CAS(8,7) cc-pVDZ 5659.3 (0.16) 2623.3 (0.16) 1792.4 (0.14) 5337.8 (0.46) 2572.0 (-1.85) 1735.7 (-1.16)
fitted CAS(8,7) 5294.9 (-0.35) 2624.9 (0.17) 1754.9 (0.06)

a See ref 38.b See ref 39.c All constants are given in MHz. The values in parentheses are the deviation from the experimental values in percent.

λω ) diag(ω1
1/2, ω2

1/2, ...,ω3N
1/2) δ ) p-1/2λω′d

J ) λω′′Sλω′
-1 Q ) (1 + J̃J)-1 P ) JQJ̃

R ) QJ̃ (3)

〈υ′′1, ...,υ′′k + 1, ...,υ′′3N-6|υb′〉 ) 2 ∑
i)1

3N-6

Rik( υ′i

υ′′k + 1)1/2

×

〈υ′′1, ...,υ′′k, ...,υ′′3N-6|υ′1, ...,υ′i - 1, ...,υ′3N-6〉 +

∑
l)1

3N-6

(2P - 1)kl( υ′l

υ′′k + 1)1/2

〈υ′′1, ...,υ′′l - 1, ...,υ′′3N-6|υb′〉 -

[(1 - P)δ]k( 2

υ′′k + 1)1/2

〈υ′′1, ...,υ′′k, ...,υ′′3N-6|υb′〉 (4)

〈υb′′|υ′1, ...,υ′i + 1, ...,υ′3N-6〉 ) 2 ∑
k)1
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j)1

3N-6(ω′′j

ω′j)
1/4] det(Q)1/2 exp[-1/2δ(1 - P)δ]

(6)

Figure 1. Labeling of the atoms and of the principal axes of inertia in
phenol.
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The calculated excitation energy for the electronic origin of
the S1 f S0 transition of phenol is 37 076 cm-1. This value
includes zero point energy corrections (ZPE) using the unscaled
harmonic frequencies of the CASSCF calculations. The calcu-
lated energy is in very good agreement with the experimental
value of 36 349 cm-1.39

IV. Vibrational Assignments

Numerous experimental24,40-45 and theoretical36,46-52 studies
of the vibrational frequencies of phenol in its electronic ground
state and first excited state have been published in the past.
Our calculated scaled harmonic frequencies for phenol in the
S0 and S1 states are compared in Tables 3 and 4 to the
experimental frequencies published by Bist et al.40,41 It has
already been pointed out in the literature24,50 that the nomen-
clature used by Bist et al. to assign the vibrational frequencies
differs from the widely used nomenclature of Varsa´nyi53 for
substituted benzenes. For historical reasons, we use the labeling

of Bist et al. in Tables 3 and 4. The different labeling schemes
of Varsányi and Bist et al. are given in Table 2.

A few remarks must be made with respect to the vibrational
frequencies of phenol in the S0 state listed in Table 3. Bist et
al. observed two bands at 1603 and 1610 cm-1. In their
interpretation, the band with the lower frequency was assigned
to mode 8a. However, this is in contradiction to the experimental
work of Green44 and Varsa´nyi.53 Furthermore, Michalska et al.49

pointed out that in ab initio calculations mode 8b always has
the lower frequency. Because our calculations confirm this
observation, we assign the band at 1603 cm-1 to mode 8b and
the band at 1610 cm-1 to mode 8a (cf. Table 3). The frequency
of mode 11 has been determined by Bist et al. to be 244 cm-1.
In a recent experimental study,24 we were able to show that the
correct frequency for this mode is 225 cm-1, which is confirmed
by our density-functional theory calculations24 as well as an
experimental study by Larsen and Nicolaisen.54 In contrast to
Green,41 Evans,43 and Keresztury et al.,46 who determined a
frequency of 958 cm-1 for mode 17a, a frequency of 995 cm-1

is given by Bist et al. for this mode. Because our calculations
indicate that mode 17a should have a lower frequency than mode
5 at 973 cm-1, we used the value of 958 cm-1 for mode 17a in
Table 3. All frequencies listed in Table 3 are scaled except
modes 9b and 14. These Kekule´ modes correspond to a
deformation of the molecule toward localized double bonds. It
was shown for benzene that highly correlated methods such as
CCSD(T) in combination with large basis sets are necessary to

TABLE 2: Differences between the Nomenclature of Bist et
al. (Ref 40) and Varsányi (Ref 53)

Bist et al. Varsa´nyi Bist et al. Varsa´nyi

11 10b 12 1
18b 15 15 18b
10b 11 7a 13
1 12

TABLE 3: Vibrational Frequencies of Phenol in the S0 State

mode sym expta
CAS(8,7)
cc-pVDZ scaled

In-Plane Vibrationsb

18b b2 403 430 401
6a a1 527 562 524
6b b2 619 664 619
12 a1 823 870 811
1 a1 999 1067 995
18a a1 1026 1092 1018
15 b2 1070 1144 1067
9bc b2 1150 1184
9a a1 1168 1251 1167
â(OH) a1 1176 1271 1185
7a a1 1261 1379 1286
3 b2 1277 1462 1363
14c b2 1343 1358
19b b2 1472 1597 1489
19a a1 1501 1633 1523
8b a1 1603d 1739 1622
8a b2 1610d 1757 1628
13 a1 3027 3318 3033
7b b2 3049 3336 3049
2 a1 3063 3348 3060
20b b2 3070 3362 3073
20a a1 3087 3370 3081
σ(OH) a1 3656 4162

Out-of-Plane Vibrationse

11 b1 244 249 240
τ(OH) a2 309 291 280
16a a2 409 436 420
16b b1 503 552 532
4 b1 686 720 693
10b b1 751 774 745
10a a2 817 836 805
17b b1 881 898 865
17a a2 958f 975 939
5 b1 973 1000 963

a See ref 24.b Scaling factors:σ(C-H) 7a-20a, 0.9141; others,
0.9326.c Kekulé modes (see text).d The order of modes 8a and 8b is
reversed with respect to Bist et al.e Scaling factor: 0.9629.f Frequency
taken from Green and Evans (cf. text).

TABLE 4: Vibrational Frequencies of Phenol in the S1 State

mode sym expta
new

assignt
CAS(8,7)
cc-pVDZ scaled

In-Plane Vibrationsb

18b b2 396 417 393
6a a1 475 506 477
6b b2 523 581 548
12 a1 783 822 775
1 a1 935 969 913
18a a1 958 1031 972
15 b2 962 1013 955
9ac a1 975 1216 965
9bc b2 989 1234 979
â(OH)c a1 1005 1283 1018
3c b2 1131 1437 1140
7a a1 1273 1369 1291
19b b2 1478 1510 1423
19a a1 1498 1545 1456
8b b2 1675 1579
8a a1 1566 1699 1602
14 b2 1180 1572 1867 1579d

13 a1 3084 3345 3103
7b b2 3092 3355 3112
2 a1 3371 3127
20b b2 3136 3380 3135
20a a1 3186 3393 3147
σ(OH) a1 3581 4156

Out-of-Plane Vibrations
16a a2 187 271
11 b1 206 162 182
4 b1 358 465 371
16b b1 441 472
10a a2 580 615 540
10b b1 615 580 492
τ(OH) a2 635 285
17b b1 700 726 616
5 b1 726 734 700
17a a2 734 700 592

a See ref 41.b Scaling factors: 9a-3, 0.7934;σ(CH): 7a-20a,
0.9276; 18b-15, 0.9427.c Vibrations with large in-plane CH bending
components.d Estimated from the corresponding values of benzene (see
text).
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calculate the frequencies for the Kekule´ modes correctly.55 In
the case of our CASSCF calculations, the unscaled frequencies
are quite close to the experimental frequencies because of a
compensation of errors resulting from the neglect of dynamical
correlation and the choice of a double-ú basis set.

Concerning the vibrations of the S1 state (see Table 4), a few
differences with respect to the original assignment of Bist et
al.40,41have to be discussed. It has been shown experimentally56

as well as in several theoretical studies57-62 on different aromatic
molecules that the frequency of the Kekule´ mode 14 is larger
in the S1 state than in the S0 state. A detailed explanation of
this behavior has been given by Shaik et al.58,59However, Bist
et al. assigned mode 14 in the S1 state to a band at a lower
frequency (1180 cm-1) than that in the S0 state (1343 cm-1).
Because we assume that the frequency of the S0 state is correct,
the assignment for the S1 state must be wrong. Concerning the
vibrational frequencies of benzene in the S1 state,63 we were
able to show that both the CASSCF and the CIS method tend
to overestimate the frequency of mode 14 in the S1 state. Using
the results for benzene, we can estimate a frequency of 1580
cm-1 for this vibration in phenol. Bist et al. observed two weak
bands at 1572 and 1598 cm-1 in the UV-absorption spectrum
of phenol. They assigned these transitions to the second overtone
of mode 6b and to the combination band 7a0

1 τ(OH)1
1, respec-

tively. One of these bands should be assigned to mode 14.
For symmetry reasons, Bist et al.40,41were not able to observe

the out-of-plane modes as fundamental transitions in the UV-
absorption spectrum of phenol. Their assignment of these modes
is based on observed overtones and hot bands and must be
viewed with some caution. In a recent experimental study,24

we examined the four most intense hot bands in the UV

spectrum of phenol using dispersed fluorescence spectroscopy
(DF) and spectral hole burning (SHB). We were able to show
that the interpretation given by Bist et al. for these bands is
wrong. On the basis of these results, we determined the
frequencies of modes 11 and 4 to be 162 and 465 cm-1,
respectively. Unfortunately, the calculated frequencies for the
out-of-plane modes are not accurate enough to give definite
results for the assignment of the other out-of-plane modes. In
Table 4, we give an alternative assignment for the out-of-plane
vibrations that is based on the calculated Duschinsky matrix
(see below).

V. Duschinsky Rotations in Phenol

The Duschinsky matrixShas been calculated from the normal
modes of the S0 and S1 states according to eq 2. The results are
summarized in Tables 5-7 as a list of the square of the matrix
elementsSij. We give only elements larger than 0.01. The sum
over the elements in each column and row should be close to
unity. On the basis of the calculated structure of the Duschinsky

TABLE 5: Duschinsky Matrix of the In-Plane Modes of Phenola

S1

S0 18b 6a 6b 12 1 15 18a 9a 9b â(OH) 7a 3 19b 19a 8b 8a 14

18b 0.989
6a 0.999
6b 0.008 0.991
12 0.974 0.013
1 0.314 0.674
18a 0.02 0.652 0.304 0.016
15 0.925 0.023 0.029 0.011
9b 0.022 0.282 0.190 0.008 0.464
9a 0.982
â(OH) 0.647 0.272 0.006 0.063
14 0.061 0.499 0.018 0.407
7a 0.967 0.007 0.013
3 0.985 0.008
19b 0.035 0.948
19a 0.014 0.963 0.009
8b 0.975 0.019
8a 0.977

a Given are the squares of the matrix elements.

TABLE 6: Duschinsky Matrix of the Out-of-Plane Modes of Phenola

S1

S0 11 16a τ(OH) 16b 4 10a 10b 17a 17b 5

11 0.970 0.024
16a 0.022 0.091 0.822 0.028 0.033
τ(OH) 0.901 0.097
16b 0.028 0.886 0.015 0.059
4 0.014 0.825 0.107 0.040
10a 0.068 0.096 0.115 0.562 0.047 0.070 0.041
10b 0.021 0.046 0.683 0.220 0.019
17a 0.028 0.014 0.112 0.089 0.594 0.162
17b 0.032 0.835 0.072 0.057
5 0.253 0.736

a Given are the squares of the matrix elements.

TABLE 7: Duschinsky Matrix of the OH- and
CH-Stretching Vibrationsa

S1

S0 13 7b 2 20b 20 σ(OH)

13 0.998
7b 0.858 0.069 0.066
2 0.051 0.921 0.021
20b 0.073 0.900 0.022
20 0.018 0.012 0.965
σ(OH) 1.00

a Given are the squares of the matrix elements.
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matrix, the vibrations can be divided into three different groups
that do not interact with each other. By symmetry arguments,
it is apparent that the out-of-plane modes (Table 7) do not
interact with the in-plane modes and that the Duschinsky matrix
should be block-diagonal. In addition to this obvious separation,
it was found that the CH-stretching vibrations (Table 6) do not
interact with the other in-plane vibrations. For the in-plane
vibrations, two very strong Duschinsky rotations are found in
our study (Table 5). The first one is between mode 1 and mode
18a. From Table 5 and Figure 2, it is apparent that the vibration
at 935 cm-1 in the S1 state (assigned to mode 1 by Bist et al.)
is more closely related to mode 18a in the ground state than to
mode 1 and vice versa.

The Duschinsky rotation between the OH-bending vibration
and modes 9b and 14 is illustrated in Figure 3. It should be
noted that in the S0 state modes 9b and 14 both have
CH-bending and CC-stretching character, whereas in the S1 state
mode 9b is a nearly pure CH-bending vibration and mode 14 is
a CC-stretching vibration with a small component of the OH-
bending mode (â(OH), cf. Figure 3). Mode 9b in the S1 state is
dominated by a linear combination of mode 9b andâ(OH) of
the S0 state. Because of this linear combination, the OH-bending
component nearly cancels out in the S1 state. This Duschinsky
effect is typical for aromatic molecules and is associated with
the fact that mode 14 has a higher frequency in the S1 state
than in the S0 state. In contrast to theoretical studies57-62 on
other aromatic systems in which normally only two modes are
reported to couple in this way, we observe a coupling of three
modes.

The out-of-plane modes show much more mode scrambling
than the in-plane modes. Because the quality of the calculated
frequencies for these modes is different in the S0 and S1 states,
some of the observed coupling might be artificial. The alterna-
tive assignment given in Table 6 for these modes is based on
the assumption that a mode of the S1 state should be labeled in
the same way as the mode in the S0 state that it most resembles.

VI. Franck -Condon Simulations

To test our program as well as the quality of the geometries
and normal modes, we first performed a FC simulation of the
S1(B2u) r S0(A1g) transition of benzene using the geometries

and normal modes obtained from the CASSCF calculations for
the S0 and S1 states. The progression of mode 1 taken from a
direct absorption spectrum of jet-cooled benzene25 and the
simulations are shown in Figure 4. The simulated and experi-
mentally observed relative intensities are listed in Table 8.
Because mode 1 corresponds to a symmetric extension of the
aromatic ring (“ring breathing”), an accurate description of the
change in the CC bond lengths due to electronic excitation is
essential for the FC simulation of this vibronic transition. The
simulation based on the CASSCF geometries reproduces the
experimental intensity pattern very well. The result of the FC
simulation supports our assumption that the CASSCF method
leads to a correct description of the change in the CC bond
length upon electronic excitation in aromatic systems.

Figure 5 compares the FC simulation of phenol to a dispersed
fluorescence (DF) spectrum24 that was obtained by exciting the
electronic origin of the S1 r S0 transition. The inset in Figure
5b displays the simulation that was obtained using the CASSCF
geometries for both the S0 and S1 states without a fit. From the
prominent bands that can be observed in the experimental
fluorescence spectrum in the region up to 1800 cm-1 relative
to the electronic origin, the mode 6a was missing in the
simulation. Bist et al.41 already noted that the change in the
rotational constants upon electronic excitation can be interpreted
as a deformation of the molecule in the S1 state along mode 6a
or mode 8a. The best agreement between the FC simulation

Figure 2. Duschinsky rotation of modes 1 and 18a.

Figure 3. Duschinsky rotation of the Kekule´ modes. For better
visualization, the size of elongation vectors has been scaled for each
normal mode. The scaling factor is the same for all elongations of one
normal mode.
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and experiment was obtained by first shortening the C-O bond
to 1.335 Å and then elongating the geometry along mode 6a
(total elongation 0.04 Å). Because mode 6a shows no Duschin-
sky rotation with other modes (Table 7), the intensity of the
remaining modes is not influenced by this procedure. During
the fitting procedure, which was performed manually, only those
changes in the geometry were considered that led to an
improvement in the rotational constants for the S1 state. The
rotational constants for the fitted geometry are listed in Table
1. The corresponding Franck-Condon simulation is displayed
in Figure 5b. The simulated and experimentally observed relative
intensities are listed in Table 8. In the spectral region marked
as A in Figure 5, three strong bands assigned as modes 1, 16b2,
and 18a can be observed in the experiment, whereas only modes
1 and 18a have a large intensity in the simulation. The reason
for this is a Fermi resonance between mode 1 and mode 16b2

that has been postulated by Wilson et al.45 Because effects such
as Fermi resonances are not taken into account in the harmonic
approximation used in our simulation, this behavior is not
reproduced correctly in our calculation. However, the integrated
intensity of the three modes is close to the experimental value.
All other main features of the experimental spectrum are
reproduced in our simulation, which underlines the validity of
the assumptions made with regard to the CASSCF geometry of
the aromatic ring.

Our comparison between the dispersed fluorescence spectrum
of phenol and its Franck-Condon simulation shows very good
agreement between the experimental and the calculated intensity
pattern. According to our Franck-Condon fit, the CC bond
length increases by 0.027 Å (on average), whereas the C-O
bond length decreases by 0.023 Å on S1 r S0 excitation. In
our future work, we will perform multidimensional Franck-
Condon simulations of aromatic molecules and clusters to get
information about geometry changes after electronic excitations.
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Figure 4. Franck-Condon simulation of the S1(1B2u) r S0(1A1g)
transition in benzene: (1) ref 25 and (2) ref 26.

TABLE 8: Experimentally Observed and Simulated
Intensities of the Direct Absorption Spectrum of Benzenea
and the Dispersed Fluorescence Spectrum of Phenol by
Exciting the Origin of the S1 r S0 Transitionb,c

transition
(assignt)

expt
intensity

simulated
intensity

transition
(assignment)

expt
intensity

simulated
intensity

Benzene
6a110 1.00 1.00 6a113 0.62 0.63
6a111 1.36 1.63 6a114 0.42 0.22
6a112 0.98 1.27 6a115 0.35 0.06

Phenol
112 0.04 0.02 6a2 0.07 0.10
6a 0.81 0.58 7a 0.52 0.66
6b 0.04 0.02 6a+12 0.15 0.25
16a2 0.19 0.09 42 0.04 0.05
12 1.00 1.00 10a2 0.11 0.06
1 0.57 1.64 122 0.08 0.24
16b2 0.40 0.02 6a+7a 0.12 0.16
18a 0.33 0.16

a See ref 25.b See ref 24.c The large difference between the
calculated and experimental values of the 1, 16b2, and 18a modes of
phenol results from a Fermi resonance (see text). The intensity of the
phenol spectrum is normalized to the 12 mode because the intensity of
the electronic origin is falsified by stray light.

Figure 5. Franck-Condon simulation of the S1(1A′) f S0(1A′)
transition in phenol. The difference in the intensity pattern between
experimental and simulated spectra in region A (modes 1, 16b2, and
18a) is a result of the Fermi resonance between modes 1 and 16b2 (ref
45) which cannot be taken into account on the basis of a harmonic
oscillator approximation. The inset of Figure 5b displays the simulated
spectrum without fitting mode 6a and the C-O bond length.
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Appendix

The recursion relations 4 and 5 can be used in two different
ways. The most general way is to calculate hot-band spectra.
At higher temperatures, absorption spectra can originate from
different vibrational levels of the electronic ground state. In this
case, the main challenge is to determine the quantum numbers
of all possible vibronic transitions that fall into a given energy
region. An algorithm that used a backtracking procedure has
been applied by Berger et al.14,64 to calculate the hot-band
spectra of benzene and pyrazine. Many modern spectroscopic
techniques use molecular beam expansion and laser excitation
to prepare the molecular system under investigation in a certain
well-defined initial vibronic state. Our program was designed
with these techniques in mind, and we consider only transitions
that originate from one specific vibronic state.

For simplicity, we restrict the following discussion to those
transitions that originate from the vibrational ground state of
the initial electronic state. The procedure outlined below can
easily be extended to spectra that originate from a vibrationally
excited molecule. To explain the use of the recursion relations,
we choose a molecule with three vibrational degrees of freedom.
If we use the convention that the recursion is always applied to
the mode with the highest number of vibrational quanta, then
all the integrals in the recursion tree in Figure 6 are needed in
order to calculate the overlap integral〈0h|3,1,1〉 which has been
taken as an example. From Figure 6, it becomes apparent that
in a sequential execution of the recursion relation some of the
integrals need to be calculated several times. To avoid this and
to evaluate eqs 4 and 5 efficiently, two problems must be
solved: the integrals must be generated in a specific order and
each integral must be stored in a way that allows it to be
accessed in an arbitrary order. Storage of integrals in a
multidimensional array that uses the set ofN vibrational quantum
numbers as an index is possible only for small systems. Gruner
and Brumer8 have demonstrated how the storage problem can
be solved using a binary tree. In this paper, we present an
alternative method that employs a hash table65 to store the
integrals.

An elegant way to solve the problem of generating and storing
the integrals can be found by interpreting the quantum numbers
for a molecule withN vibrational degrees of freedom as a
N-figured polyadic number to the baseB. The numberB - 1
denotes the maximum number of quanta allowed in each
vibrational mode. WithB ) 3, the state vector 102003 (the index
indicates the base) corresponds to 1× B4 + 2 × B2 ) 9910 in
the decimal system. Thus by simply counting the decimal
numbers up from zero all indices can be generated in the desired
order. For a molecule like phenol withN ) 33 andB ) 6, a

total of 2.8× 1026 different state vectors can be generated in
this way. This number can be reduced drastically by imposing
the following restrictions on the simulation:

1. Only vibrations up to a given maximum energyEmax are
considered.

2. Only a given number of modes can be excited simulta-
neously.

3. The total number of vibrational quanta in all modes is
restricted.

4. The maximum number of vibrational quanta in one mode
is B - 1.

Criterion 4 is already included in the definition of the polyadic
system used. The other restrictions are checked during the
calculation. For an efficient execution, it is also necessary to
ignore nonplausible groups of numbers. If restrictions 1-3 are
not satisfied, the digits in at least one place of the polyadic
number have to be carried over to generate an acceptable state
vector. This is achieved by setting the zeros in the lower valued
places toB - 1. This is illustrated in the following example:

For every state vector that satisfies conditions 1-3, a numerical
value for the respective FC integral is calculated and stored.

For a small problem, it would be feasible to convert the
polyadic number that represents the state vector into the decimal
system and use it as the index in a linear array. For larger
problems, the size of the array would very soon reach the
capability of standard PCs or workstations. Because of restric-
tions 1-3, only a small number of the elements in such an array
are actually needed. A standard algorithm to tackle such a
problem is hashing.

In its simplest form, a hash table is just a linear array that
contains in each of its elements the information to be stored
(the overlap integral), a hash key, and a flag that indicates if an
element is occupied. The hash algorithm consists of a trans-
formation that assigns a table index to every hash key as well

Figure 6. Recursion tree for the calculation of the overlap integral〈000 | 311〉.

00000013 f E < Emax: calculate overlap

+1 ) 00000023 f E < Emax: calculate overlap

... .......

+1 ) 00220103 f E > Emax:
set new index to 00220123

+1 ) 00220203 f E still larger thanEmax:
set new index to 00222223

+1 ) 01000003 f E < Emax: calculate overlap

10654 J. Phys. Chem. A, Vol. 104, No. 46, 2000 Schumm et al.



as a collision treatment. Because the number of possible keys
is much greater than the number of elements in the table, an
unambiguous key transformation is not possible. The collision
treatment generates a new index whenever the transformation
does not reach the desired result (e.g., the indexed element is
already occupied in the writing process). We use a standard
collision treatment that has been proposed by Wirth:65

Here,h0 is the original index,i is the number of collisions, and
sizeis the number of elements in the hash table. For efficient
execution, the key transformation and the collision treatment
must be fast and the number of the collisions should be small.
Because the number of collisions increases with the occupancy
of the hash table, it is mandatory to use a table with more entries
than integrals to be stored.

An efficient key transformation should map the possible keys
uniformly on the existing indices to avoid collisions. To
transform the polyadic number into a decimal number would
be efficient but feasible only for small problems. Starting from
the left, we are free to identify the digits in the polyadic number
with the vibrational frequencies in ascending order. Because of
energy restriction 1, we find low frequency modes excited in
more state vectors than modes with higher frequencies. In the
case of phenol, a key transformation that interprets the first six
digits in a completely polyadic manner and generates a reduced
polyadic number for the remaining numbers by deleting all zeros
was found to be effective. In this way, the state vector

would be reduced to
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