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Franck—Condon Simulation of the § — S Spectrum of Phenol

I. Introduction

S. Schumm, M. Gerhards,* and K. Kleinermanns

Heinrich-Heine Uniersitd Dusseldorf, Institut fu Physikalische Chemie und Elektrochemie |,
D-40225 Disseldorf, Germany

Receied: January 13, 2000; In Final Form: August 17, 2000

In this paper, a FranckCondon simulation of the;S— S transition of phenol is given including all normal
modes. The geometries of phenol in itsdBd S states are obtained from CASSCEF calculations. The calculated
scaled harmonic frequencies are in good agreement with the experimental values. To calculate the Franck
Condon factors, Duschinsky rotations between ther®l S states are taken into account. A very strong
Duschinsky rotation is observed between modes 1 and 18a and modes 9b, 14, and the OH-bending vibration.
To get good agreement between experimental and theoretical intensities, the calculated geometry of the S
state is fitted by reducing the-€0 bond length and elongating the molecule along mode 6a. Thus, the most
significant changes in geometry in the Sate can be deduced from the experimentally observed intensity
pattern. The program developed to calculate the Fra@ndon factors is described and tested for the well-
known spectrum of the benzene molecule. It is shown how the use of a hash table reduces storage space
which is necessary for a multidimensional Fran€kondon analysis of large molecules.

[I. Calculation of Franck —Condon Integrals

The relative intensities of vibronic bands in the electronic ~ Different r_“ethOd%g’z?*sz have been proposed to calculate
transitions of molecules is governed by the Fran€ondon multidimensional FranckCondon integrals. We chose the

(FC) principlel™2 Under the assumptions that the Bern
Oppenheimer approximatiéris valid and that the electronic
transition moment varies only slowly with the internuclear
distances, the probability of a vibronic transition is proportional
to the square of the vibrational overlap integral between the
initial and final states. These values are commonly known as
Franck-Condon factors. To calculate the overlap integrals for
polyatomic molecules, the normal modes of the final state have
to be expressed in terms of the normal modes of the initial state.
This problem has been qualitatively discussed by Duschifisky.
In this theoretical framework, the geometries and normal modes
of a molecule in both electronic states are all that is needed to
calculate the relative intensity distribution of a vibronic transi-
tion. Because of the development of methods such as the
quantum consistent force field QCFF/PI of Warshel and
Karplug and ab initio techniques such as €khd CASSCF,
geometries and normal modes of small to medium size
molecules in different electronic states can now be calculated

recursion relations of Doctorov, Malkin, and Man®owhich

are exact in the harmonic approximation, to calculate the FC
integrals of the $— S vibronic transitions of phenol. To our
knowledge, Gruner et &1 were the first to apply this method

to the spectra of larger molecules. Callis ef% used the
recursion relations to calculate the fluorescence spectra of indole.
The derivation of the general expressions for the multidimen-
sional FC integrals can be found either in the original work of
Doctorov et af® or in a recent paper of Berger et &#.who
analyzed the hot-band spectra of benzene and pyrazine. In this
paper, only a brief overview of the equations involved in the
calculation is given.

The harmonic vibrational eigenfunction of amatomic
molecule can be specified by a sethvf= 3n — 6 vibrational
guantum number;: |[v0= |v1, vy, ... vnO The frequency
associated with the normal coordinaieis denotedw;. The
transformation between the normal coordinates of the two
electronic states is given h§829

routinely. On the basis of these methods, numerous applications q'= Y S.q. +d 1)
of FC calculations have been presented in the liter&#eMost : Z KT

of these studies just focus on the interpretation of experimentally

known spectra. Because the geometry difference between twoThe vectord describes a translation in then-8imensional
electronic states is a major factor that influences FC intensities, coordinate space of the molecule, and the orthogonal m&trix
the simulation of vibronic spectra of polyatomic molecules can defines a rotation in the normal coordinate space. The translation
be regarded as a valuable test with respect to the quality of vector and the rotation matrix can be calculated from the normal
calculated geometries and as a starting point to obtain improvedcoordinates and the equilibrium Cartesian configuratigyin

structures.

the different electronic statési0.29

In this paper, a program is presented to calculate multidi-
mensional FranckCondon integrals and the application to the S=L)L d=L)TMHA - ()
dispersed fluorescence spectrum of phenpHSS, transitiony*
is given. As test case for our Franclondon program, the  Ineq 2,L is a matrix that contains the mass-weighted Cartesian
simulation of the direct absorption spectrum of benzeffdhas normal coordinates as columns akdis a diagonal matrix of

been chosen.

the atomic masses. It should be noted that a proper coordinate
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TABLE 1: Rotational Constants of Phenol in Its Electronic Ground State and the First Excited Staté

S S
A B cr A B’ c
experiment 5650.5F5 2619.236 1789.8553 5313.6 2620.% 1756.2
CAS(8,7)cc-pVDZ  5659.3 (0.16) 2623.3 (0.16) 1792.4 (0.14) 5337.8 (0.46) 2572.8%) 1735.741.16)
fitted CAS(8,7) 5294.9+0.35) 2624.9 (0.17) 1754.9 (0.06)

aSee ref 38P See ref 39¢ All constants are given in MHz. The values in parentheses are the deviation from the experimental values in percent.

system must be chosen to describe the geometry of the initial 4
and final electronic stat€$:34 According to Doctorov et aP® " H,
the following matrixes are needed for the recursion relations: O
i, = diagw,"? 0, ..., 05 o=h""4,d ¢ "
B L 5 H, 1 2
J=2,9," Q=@+3)" P=IQ] ) G o G,
R=0QJ (3) e
The tilde in eq 3 denotes the transpose matrix. Using the C TG
definition given in egs 13, the recursion relations for emission H; c H,
and absorption are “4
3N—6 Ui' 1/2 I“L‘
D7, o0+ 1 v 60 EE2 ) Ry X
- vl Figure 1. Labeling of the atoms and of the principal axes of inertia in
DY, ooy Vs ooy VgV oo V] — 1, oo Vg phenol. 9 princip
3N-6 v \2
Z (2P — 1)kl(— @Y, oy 0= 1, .., U6 V'O sky rotations of normal modes are obtained, which arise only
= v/ +1 from the application of different ab initio methods to describe
1/2 the two states.
[(a- p)a]k( @Y, .., Vpy ooy Vil D' 0(4) For the CASSCEF calculations of benzene, an active space of
v +1 the sixzr-orbitals of the aromatic ring has been chosen. The
active space used for phenol was chosen by analogy to a
and previously published stud§and consists of the six-valence
orbitals of the aromatic ring and the oxygen lone pair orbital
3N-6 v |12 which hast-symmetry. The active spaces of benzene and phenol
D" vy, ., v + 1, 05 _F 2 Z‘ Ry X are abbreviated as CAS(6,6) and CAS(8,7), respectively. For
= vit+1 all calculations, the correlation consistent cc-pVDZ basi& set
@7, ..., v — 1, .. U _glVL - V), e, Vgl is used.
N6 AT The rotational constants calculated for thea®d § states
Z (2Q — 1),; _ B[V}, o — 1, ooy Vgl of phenol are compared to the experimental values of L&¥sen
£ Nor+1 ! and Berden et @ in Table 1. The geometry of the phenol
5 \112 molecule (cf. Figure 1) has been restricteCtsymmetry. The
. "y ' ' calculated bond lengths and bond angles have been published
(Ra)'(v; +1 VL s Vi Va6 () in an earlier worlé® The deviations between calculated and

experimentally observed bond lengths and bond angles of the

Before egs 4 and 5 can be used to calculate FC factors, theSo State are less than 0.01 A arf] tespectively. Only the £-O

overlap integral of the electronic origin has to be calculated Pond length and the £0—H; bond angle (Figure 1) show
explicitly by slightly larger deviations (0.019 A and 2)9Thus, the rotational

constants obtained for the State are in very good agreement

-6 ff\ L4 with the experimental values. Compared to thetate, a larger
I" (—) ] det@Q)*? exp[—l/zé(l - P)J] deviation between the experimentally observed and calculated
=1 \o; rotational constants is obtained for the Sate. This results
(6) mainly from the C-O bond length which is underestimated in
. . . . the CASSCEF calculations. A significant shortening of the@@
_leferent algorithms have b(_ee_n proposed in the Ilte_rétiﬁto _ bond length of about 0.1 A is predicted from high-resolution
implement eqs 4 and 5 efficiently. Our own solution to this  g5rescence excitation experiments, whereas only a small
problem is explained in the appendix of this paper. shortening (0.01 A) is predicted by the CASSCF calculations.
The C-0 bond length is important in the discussion of the FC
simulations. We demonstrate that the result of the simulation

CASSCEF calculations have been performed for theusl can be improved considerably by a small adjustment of the
S, states of benzene and phenol using the Gaussian 94 &hd 98 CASSCF geometry of the ;Sstate (see section VI). The
programs. The CASSCF method is the best available methodrotational constants of the fitted geometry are given in Table 1.
which can be applied to both thg &nd S states. By using the  These values show only small deviations from the experimen-
same method for the two electronic states, no artificial Duschin- tally obtained rotational constants.

|]T)H|6!D= 23N—6/2

Ill. Geometries and Excitation Energies
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TABLE 2: Differences between the Nomenclature of Bist et
al. (Ref 40) and Varsayi (Ref 53)

Schumm et al.

TABLE 4: Vibrational Frequencies of Phenol in the S State
new CAS(8,7)

Bist et al. Varsayi Bist et al. VarSayi mode sym expt assignt  cc-pvDZ scaled
11 10b 12 1 In-Plane Vibration%
18b 15 15 18b 18b o) 396 417 393
10b 11 7a 13 6a a 475 506 477
1 12 6b b 523 581 548
12 a 783 822 775
TABLE 3: Vibrational Frequencies of Phenol in the § State 1 a 935 969 913
CASE) 5 6 o 1013 o5
mode sym expt cc-pvDZ scaled 9 y 975 1216 065
In-Plane Vibration% o° by 989 1234 979
18b o 403 430 401 B(OH)® & 1005 1283 1018
6a a 527 562 524 3¢ b, 1131 1437 1140
6b 0} 619 664 619 7a a 1273 1369 1291
12 a 823 870 811 19b o) 1478 1510 1423
1 a 999 1067 995 19a a 1498 1545 1456
18a a 1026 1092 1018 8b b 1675 1579
15 0} 1070 1144 1067 8a a 1566 1699 1602
Ik b, 1150 1184 14 b 1180 1572 1867 1579
9a a 1168 1251 1167 13 a 3084 3345 3103
S(OH) a 1176 1271 1185 7b b 3092 3355 3112
7a a 1261 1379 1286 2 a 3371 3127
3 ) 1277 1462 1363 20b o) 3136 3380 3135
14 b, 1343 1358 20a a 3186 3393 3147
19b o) 1472 1597 1489 d(OH) a 3581 4156
19a a 1501 1633 1523 Out-of-Plane Vibrations
8b a 1603 1739 1622
16a a 187 271
8a o) 1610 1757 1628
11 b 206 162 182
13 a 3027 3318 3033
4 o] 358 465 371
7b b 3049 3336 3049
16b h 441 472
2 a 3063 3348 3060
10a a 580 615 540
20b o) 3070 3362 3073
10b h 615 580 492
20a a 3087 3370 3081
o(OH) a 3656 4162 OH) =& 635 285
17b h 700 726 616
Out-of-Plane Vibratiors 5 b 726 734 700
11 o] 244 249 240 17a a 734 700 592
7(OH) Y 309 291 280 .
16a a 409 436 420 aSee ref 41P Scaling factors: 9a3, 0.7934;0(CH): 7a-20a,
16b b 503 552 532 0.9276; 18b-15, 0.9427 £ Vibrations with large in-plane CH bending
4 by 686 720 693 components? Estimated from the corresponding values of benzene (see
10b b 751 774 745 text).
i%l g géz ggg ggg of Bist et al. in Tables 3 and 4. The different labeling schemes
17a a 959 975 939 of Varsanyi and Bist et al. are given in Table 2.
5 by 973 1000 963 A few remarks must be made with respect to the vibrational

aSee ref 24P Scaling factors:6(C—H) 7a—20a, 0.9141; others,
0.9326.¢ Kekule modes (see text). The order of modes 8a and 8b is
reversed with respect to Bist et &lScaling factor: 0.9629.Frequency

taken from Green and Evans (cf. text).

The calculated excitation energy for the electronic origin of
the § — S transition of phenol is 37 076 crh. This value

frequencies of phenol in theyState listed in Table 3. Bist et
al. observed two bands at 1603 and 1610 tnin their
interpretation, the band with the lower frequency was assigned
to mode 8a. However, this is in contradiction to the experimental
work of Gree#* and Varsayi.>3 Furthermore, Michalska et &.
pointed out that in ab initio calculations mode 8b always has
the lower frequency. Because our calculations confirm this

includes zero point energy corrections (ZPE) using the unscaledobservation, we assign the band at 1603 &t mode 8b and

harmonic frequencies of the CASSCF calculations. The calcu- the band at 1610 cnt to mode 8a (cf. Table 3). The frequency
lated energy is in very good agreement with the experimental of mode 11 has been determined by Bist et al. to be 244'cm
value of 36 349 cm!.3°

IV. Vibrational Assignments

Numerous experimenfdl*®-45 and theoreticdf*6-52 studies

In a recent experimental studywe were able to show that the
correct frequency for this mode is 225 chwhich is confirmed
by our density-functional theory calculatidfsas well as an
experimental study by Larsen and Nicolai$émn contrast to
Greent! Evans?® and Keresztury et af8 who determined a

of the vibrational frequencies of phenol in its electronic ground frequency of 958 cmt! for mode 173, a frequency of 995 cin
state and first excited state have been published in the pastis given by Bist et al. for this mode. Because our calculations
Our calculated scaled harmonic frequencies for phenol in the indicate that mode 17a should have a lower frequency than mode
S and S states are compared in Tables 3 and 4 to the 5 at 973 cm?, we used the value of 958 crhfor mode 17a in

experimental frequencies published by Bist et%t It has
already been pointed out in the literat¥fre® that the nomen-

Table 3. All frequencies listed in Table 3 are scaled except
modes 9b and 14. These Kekuteodes correspond to a

clature used by Bist et al. to assign the vibrational frequencies deformation of the molecule toward localized double bonds. It

differs from the widely used nomenclature of Varg@&® for

was shown for benzene that highly correlated methods such as

substituted benzenes. For historical reasons, we use the labelin@€CSD(T) in combination with large basis sets are necessary to
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TABLE 5: Duschinsky Matrix of the In-Plane Modes of PhenoR

S

S 18b 6a 6b 12 1 15 18a 9a 9b S(OH) 7a 3 19b  19a 8b 8a 14
18b 0.989
6a 0.999
6b 0.008 0.991
12 0.974 0.013
1 0.314 0.674
18a 0.02 0.652 0.304 0.016
15 0.925 0.023 0.029 0.011
9b 0.022 0.282 0.190 0.008 0.464
9a 0.982
B(OH) 0.647 0.272 0.006 0.063
14 0.061 0.499 0.018 0.407
7a 0.967 0.007 0.013
3 0.985 0.008
19b 0.035 0.948
19a 0.014 0.963 0.009
8b 0.975 0.019
8a 0.977

aGiven are the squares of the matrix elements.
TABLE 6: Duschinsky Matrix of the Out-of-Plane Modes of Phenok

S
S 11 16a 7(OH) 16b 4 10a 10b 17a 17b 5

11 0.970 0.024

16a 0.022 0.091 0.822 0.028 0.033

7(OH) 0.901 0.097

16b 0.028 0.886 0.015 0.059

4 0.014 0.825 0.107 0.040

10a 0.068 0.096 0.115 0.562 0.047 0.070 0.041

10b 0.021 0.046 0.683 0.220 0.019

17a 0.028 0.014 0.112 0.089 0.594 0.162

17b 0.032 0.835 0.072 0.057

5 0.253 0.736

aGiven are the squares of the matrix elements.
calculate the frequencies for the Kekutedes correctly® In TABLE 7: Duschinsky Matrix of the OH- and
the case of our CASSCF calculations, the unscaled frequencie<CH-Stretching Vibrations
are quite close to the experimental frequencies because of a S
compensation of errors resulting from the neglect of dynamical g, 13 7b 2 20b 20  o(OH)
correlation and the choice of a doulijebasis set.

C ing the vibrations of th bl f 13 0-998

_Concerning the vibrations of t Q_S_tate (sec_e Table 4), a ew 7y 0858 0.069 0.066
differences with respect to the original assignment of Bist et 2 0.051 0921 0.021
al#%4Ihave to be discussed. It has been shown experimefttally  20b 0.073 0.900 0.022
as well as in several theoretical studieg? on different aromatic Z?OH) 0.018 0.012  0.965 100
O .

molecules that the frequency of the Kekutede 14 is larger
in the § state than in the Sstate. A detailed explanation of
this behavior has been given by Shaik et®# However, Bist
et al. assigned mode 14 in the Sate to a band at a lower
frequency (1180 cm') than that in the Sstate (1343 cmt).
Because we assume that the frequency of g&ae is correct,

aGiven are the squares of the matrix elements.

spectrum of phenol using dispersed fluorescence spectroscopy
(DF) and spectral hole burning (SHB). We were able to show
that the interpretation given by Bist et al. for these bands is
the assignment for the; State must be wrong. Concerning the Wrong. On the basis of these results, we determined the
vibrational frequencies of benzene in the Sate$® we were frequencies of modes 11 and 4 to be 162 and 465'cm
able to show that both the CASSCF and the CIS method tend espectively. Unfortunately, the calculated frequencies for the
to overestimate the frequency of mode 14 in thetgte. Using out-of-plane mode_s are not accurate enough to give definite
the results for benzene, we can estimate a frequency of 1580"€sults for the assignment of the other out-of-plane modes. In
cm~ for this vibration in phenol. Bist et al. observed two weak Table 4, we give an alternative assignment for the out-of-plane
bands at 1572 and 1598 cfin the UV-absorption spectrum vibrations that is based on the calculated Duschinsky matrix
of phenol. They assigned these transitions to the second overtonéS€€ below).
of mode 6b and to the combination band; ZéOH);, respec-
tively. One of these bands should be assigned to mode 14.
For symmetry reasons, Bist etdt*!were not able to observe The Duschinsky matri$ has been calculated from the normal
the out-of-plane modes as fundamental transitions in the UV- modes of the §and S states according to eq 2. The results are
absorption spectrum of phenol. Their assignment of these modessummarized in Tables-57 as a list of the square of the matrix
is based on observed overtones and hot bands and must belementsS;. We give only elements larger than 0.01. The sum
viewed with some caution. In a recent experimental sfiddy, over the elements in each column and row should be close to
we examined the four most intense hot bands in the UV unity. On the basis of the calculated structure of the Duschinsky

V. Duschinsky Rotations in Phenol
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S0 Sl

Figure 2. Duschinsky rotation of modes 1 and 18a.

matrix, the vibrations can be divided into three different groups
that do not interact with each other. By symmetry arguments,
it is apparent that the out-of-plane modes (Table 7) do not
interact with the in-plane modes and that the Duschinsky matrix
should be block-diagonal. In addition to this obvious separation,
it was found that the CH-stretching vibrations (Table 6) do not
interact with the other in-plane vibrations. For the in-plane
vibrations, two very strong Duschinsky rotations are found in
our study (Table 5). The first one is between mode 1 and mode
18a. From Table 5 and Figure 2, it is apparent that the vibration
at 935 cn1lin the S state (assigned to mode 1 by Bist et al.)
is more closely related to mode 18a in the ground state than to_. . . .
g Figure 3. Duschinsky rotation of the Kekulenodes. For better

mode 1 and \_/'Ce versa._ . . . visualization, the size of elongation vectors has been scaled for each

The Duschinsky rotation between the OH-bending vibration normal mode. The scaling factor is the same for all elongations of one
and modes 9b and 14 is illustrated in Figure 3. It should be normal mode.

noted that in the & state modes 9b and 14 both have ,nq normal modes obtained from the CASSCF calculations for
CH-bending and CC-stretching character, whereas intstag the $ and S states. The progression of mode 1 taken from a

mode 9b is a.nearlly pure CH-bending vibration and mode 14 is direct absorption spectrum of jet-cooled benZérand the

a CC.-stretchlng vibration \,N'th a small component of the.OH- simulations are shown in Figure 4. The simulated and experi-
bending modeA(OH), cf. Figure 3). Mode 9b in the;State i enially observed relative intensities are listed in Table 8.
dominated by a linear co_mb_lnatlon of r_nod_e 9b #(OH) of . Because mode 1 corresponds to a symmetric extension of the
the S state. Because of this Imegr comblnatlon., the OH-.bendlng aromatic ring (‘ring breathing”), an accurate description of the
component nearly cancels out in thessate. This Duschinsky — change in the CC bond lengths due to electronic excitation is
effect is typical for aromatic molecules and is associated with ggqentia| for the FC simulation of this vibronic transition. The
the fact that mode 14 has a higher frequency in _tmeztSte simulation based on the CASSCF geometries reproduces the
than in the §state. In contrast to theoretical studfs? on experimental intensity pattern very well. The result of the FC
other aromatic systems in which normally only two modes are g, 1ation supports our assumption that the CASSCF method
reported to couple in this way, we observe a coupling of three o545 1o a correct description of the change in the CC bond
modes. _length upon electronic excitation in aromatic systems.

The oqt-of-plane modes show much more mode scrambling Figure 5 compares the FC simulation of phenol to a dispersed
than the in-plane modes. Because the quality of the calculatedy o escence (DF) spectri#that was obtained by exciting the
frequencies for these mOde?’ IS d|fferent in tl_a_ea_ﬁd 3 states, electronic origin of the §— S transition. The inset in Figure
some of the observed coupling might be artificial. The alterna- 5b displays the simulation that was obtained using the CASSCF
tive assignment given in Table 6 for these modes is basgd ONgeometries for both theg@nd S states without a fit. From the
the assumption that a mode of thesgate should be labeled in 55 inent bands that can be observed in the experimental
the same way as the mode in thestate that it most resembles. 4, 5rescence spectrum in the region up to 1800 trelative
to the electronic origin, the mode 6a was missing in the
simulation. Bist et af! already noted that the change in the

To test our program as well as the quality of the geometries rotational constants upon electronic excitation can be interpreted
and normal modes, we first performed a FC simulation of the as a deformation of the molecule in thes$ate along mode 6a
Si(Bay) — So(A1g) transition of benzene using the geometries or mode 8a. The best agreement between the FC simulation

VI. Franck —Condon Simulations
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" experiment” o]
1.5+ @ a) experiment +
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| L L L L L
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G 1.0, @®
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c
= 05 CAS(8,7)/cc-pVDZ 121
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1
0.0l 1 A IO N ISR 7a 17
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rel. frequency [cm™] 12 20 6ho 16100 1300 1800
Figure 4. Franck-Condon simulation of the B, — So(*A1g
transition in benzene: (1) ref 25 and (2) ref 26. 6a 7a
TABLE 8: Experimentally Observed and Simulated 18 6 +1253+1 )
Intensities of the Direct Absorption Spectrum of Benzeng , 16a] 1602 622 a 12° cas7a
and the Dispersed Fluorescence Spectrum of Phenol by 14 iea Iy 4 1Oaj |
Exciting the Origin of the S; ~—— S Transition?¢ — T — et

0 200 400 600 800 1000 1200 1400 1600 1800
rel. frequency [cm™']
Figure 5. Franck-Condon simulation of the ;§A') — S(*A")

transition expt simulated transition expt  simulated
(assignt) intensity intensity (assignment) intensity intensity

Benzene

64110 1.00 1.00 6HS3 0.62 0.63 transition in phenol. The difference in the intensity pattern between

6411 1.36 163  6H4 0.42 0.22 experimental and simulated spectra in region A (modes 13, ¥6tul

6412 0.98 1.27 6415 0.35 0.06 18a) is a result of the Fermi resonance between modes 1 aAdrééb
Phenol 45) which cannot be taken into account on the basis of a harmonic

oscillator approximation. The inset of Figure 5b displays the simulated

1122 0.04 0.02 62 0.07 0.10 ; g

6a 0.81 058 7a 052 066 spectrum without fitting mode 6a and the-O bond length.

6b 0.04 0.02 6412 0.15 0.25

16a 0.19 009 4 0.04 0.05 that has been postulated by Wilson et@ecause effects such

12 1.00 1.00 1ga 0.11 0.06 as Fermi resonances are not taken into account in the harmonic

ieb? 8'% (1).8‘;1 é&?a %‘01% %21% approximation used in our simulation, this behavior is not

18a 0.33 0.16 ' ' reproduced correctly in our calculation. However, the integrated

intensity of the three m is cl he experimental value.
aSee ref 25PSee ref 24°The large difference between the tensity of the three modes is close to the experimental value

calculated and experimental values of the 1,216ind 18a modes of All other main features of the experimental spectrum are

phenol results from a Fermi resonance (see text). The intensity of the 'eproduced in our simulation, which underlines the validity of
phenol spectrum is normalized to the 12 mode because the intensity ofthe assumptions made with regard to the CASSCF geometry of
the electronic origin is falsified by stray light. the aromatic ring.

and experiment was obtained by first shortening the€dbond Our comparison between the dispersed fluorescence spectrum
to 1.335 A and then elongating the geometry along mode 6a of phenol and its FranckCondon simulation shows very good
(total elongation 0.04 A). Because mode 6a shows no Duschin-agreement between the experimental and the calculated intensity
sky rotation with other modes (Table 7), the intensity of the pattern. According to our FranelCondon fit, the CC bond
remaining modes is not influenced by this procedure. During length increases by 0.027 A (on average), whereas th® C

the fitting procedure, which was performe_d manually, only those pong length decreases by 0.023 A on-S S, excitation. In
changes in the geometry were considered that led 10 ang,- f,ryre work, we will perform multidimensional Franek
improvement in the rotational constants for thestate. The Condon simulations of aromatic molecules and clusters to get

rotational constants for the fitted geometry are I_|ste_d in Table information about geometry changes after electronic excitations.
1. The corresponding FranelCondon simulation is displayed

in Figure 5b. The simulated and experimentally observed relative

intensities are listed in Table 8. In the spectral region marked Acknowledgment. The authors thank the Deutsche For-
as A in Figure 5, three strong bands assigned as modes 2, 16b schungsgemeinschatft for financial support. We acknowledge the
and 18a can be observed in the experiment, whereas only modegranted computer time from the Univeisgigchenzentrum

1 and 18a have a large intensity in the simulation. The reasonDusseldorf and the Regionales Rechenzentrum der Universita
for this is a Fermi resonance between mode 1 and modé 16b zu Koln.
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Figure 6. Recursion tree for the calculation of the overlap integ@80 | 3110]

Appendix total of 2.8 x 10?8 different state vectors can be generated in
this way. This number can be reduced drastically by imposing
the following restrictions on the simulation:

1. Only vibrations up to a given maximum enerBy.ax are

The recursion relations 4 and 5 can be used in two different
ways. The most general way is to calculate hot-band spectra.
At higher temperatures, absorption spectra can originate from .
different vibrational levels of the electronic ground state. In this considered. . . .
case, the main challenge is to determine the quantum numbers 2- ONly @ given number of modes can be excited simulta-
of all possible vibronic transitions that fall into a given energy neously. . . . )
region. An algorithm that used a backtracking procedure has 3+ The total number of vibrational quanta in all modes is
been applied by Berger et H1% to calculate the hot-band restricted. o ,
spectra of benzene and pyrazine. Many modern spectroscopic 4. The maximum number of vibrational quanta in one mode
techniques use molecular beam expansion and laser excitatiortS B - 1 ) ) ) o ]
to prepare the molecular system under investigation in a certain Criterion 4 is already |ncluded.|n.the definition of the polyadlc
well-defined initial vibronic state. Our program was designed System used. The other restrictions are checked during the
with these techniques in mind, and we consider only transitions Calculation. For an efficient execution, it is also necessary to
that originate from one specific vibronic state. ignore nonplau&blg groups of numbers. If restrictions8lare .

For simplicity, we restrict the following discussion to those ot satisfied, the digits in at least one place of the polyadic
transitions that originate from the vibrational ground state of Number have to be carried over to generate an acceptable state
the initial electronic state. The procedure outlined below can Vector. This is achieved by setting the zeros in the lower valued
easily be extended to spectra that originate from a vibrationally Places toB — 1. This is illustrated in the following example:
excited molecule. To explain the use of the recursion relations,
we choose a molecule with three vibrational degrees of freedom.
If we use the convention that the recursion is always applied to
the mode with the highest number of vibrational quanta, then
all the integrals in the recursion tree in Figure 6 are needed in
order to calculate the overlap integfB|3,1,1which has been
taken as an example. From Figure 6, it becomes apparent that

0000003— E < E,,,¢ calculate overlap

+1=0000003— E < E,« calculate overlap

+1=002201Q—E > E

max

in a sequential execution of the recursion relation some of the
integrals need to be calculated several times. To avoid this and
to evaluate egs 4 and 5 efficiently, two problems must be
solved: the integrals must be generated in a specific order and
each integral must be stored in a way that allows it to be
accessed in an arbitrary order. Storage of integrals in a

set new index to 0022012

+1=002202Q— E still larger thanE,,
set new index to 0022222

+1=010000Q— E < E, calculate overlap

multidimensional array that uses the selofibrational quantum
numbers as an index is possible only for small systems. GrunerFor every state vector that satisfies conditiors31a numerical
and Brumet have demonstrated how the storage problem can value for the respective FC integral is calculated and stored.
be solved using a binary tree. In this paper, we present an For a small problem, it would be feasible to convert the
alternative method that employs a hash téble store the polyadic number that represents the state vector into the decimal
integrals. system and use it as the index in a linear array. For larger
An elegant way to solve the problem of generating and storing problems, the size of the array would very soon reach the
the integrals can be found by interpreting the quantum numberscapability of standard PCs or workstations. Because of restric-
for a molecule withN vibrational degrees of freedom as a tions 13, only a small number of the elements in such an array
N-figured polyadic number to the ba& The numbeB — 1 are actually needed. A standard algorithm to tackle such a
denotes the maximum number of quanta allowed in each problem is hashing.
vibrational mode. WithB = 3, the state vector 1029¢he index In its simplest form, a hash table is just a linear array that
indicates the base) corresponds ta B* + 2 x B2 = 99 in contains in each of its elements the information to be stored
the decimal system. Thus by simply counting the decimal (the overlap integral), a hash key, and a flag that indicates if an
numbers up from zero all indices can be generated in the desirecelement is occupied. The hash algorithm consists of a trans-
order. For a molecule like phenol with = 33 andB = 6, a formation that assigns a table index to every hash key as well
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as a collision treatment. Because the number of possible keys (24) Roth, W.; Imhof, P.; Gerhards, M.; Schumm, S.; Kleinermanns,
is much greater than the number of elements in the table, an- €hem. Phys200Q 252, 247.

unambiguous key transformation is not possible. The collision

(25) Hiraya, A.; Shobatake, KI. Chem. Phys1991, 94, 7700.

treatment generates a new index whenever the transformation (26) Neusser, H. J.; Schlag, E. Wngew. Chem1992 104, 269.
does not reach the desired result (e.g., the indexed element is (27) Boktorov, E. V.; Malkin, I. A.; Man'ko, V. I.J. Mol. Spectrosc.

already occupied in the writing process). We use a standard

collision treatment that has been proposed by WAitth:

h = (h,+ i%) modulosize 7
Here,ho is the original indexj is the number of collisions, and
sizeis the number of elements in the hash table. For efficient
execution, the key transformation and the collision treatment
must be fast and the number of the collisions should be small.

56, 1.

(28) Doktorov, E. V.; Malkin, I. A.; Man’ko, V. 1.J. Mol. Spectrosc.
1977, 64, 302.

(29) Sharp, T. E.; Rosenstock, H. Nl. Chem. Phys1964 41, 3453.
(30) Kupka, H.; Cribb, P. HJ. Chem. Phys1986 85, 1303.

(31) Chen, K.; Pei, CChem. Phys. Lettl99Q 165 523.

(32) Baranov, V. |.; Zelent'sov, D. YJ. Mol. Struct.1992 272, 283.
(33) Pickett, H. M.; Strauss, H. L1. Am. Chem. S0d.97Q 92, 7281.
(34) Louck, J. D.; Galbraith, H. WRev. Mod. Phys1976 48, 69.

(35) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.;

Because the number of collisions increases with the occupancyJohnson, B. G.; Robb, M. A;; Cheeseman, J. R.; Keith, T.; Petersson, G.

of the hash table, it is mandatory to use a table with more entries

than integrals to be stored.

An efficient key transformation should map the possible keys
uniformly on the existing indices to avoid collisions. To
transform the polyadic number into a decimal number would
be efficient but feasible only for small problems. Starting from
the left, we are free to identify the digits in the polyadic number

with the vibrational frequencies in ascending order. Because of

energy restriction 1, we find low frequency modes excited in

more state vectors than modes with higher frequencies. In the

case of phenol, a key transformation that interprets the first six

A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski,
V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B;
Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.;
Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.;
Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-
Gordon, M.; Gonzalez, C.; Pople, J. Baussian 94revision E.2; Gaussian,
Inc.: Pittsburgh, PA, 1995.

(36) Schumm, S.; Gerhards, M.; Roth, W.; Gier, H.; Kleinermanns, K.
Chem. Phys. Lettl996 263 126.

(37) Dunning, T. H.J. Chem. Phys1989 90, 1007.
(38) Larsen, NJ. Mol. Struct.1979 51, 175.

(39) Berden, G.; Meerts, W. L.; Schmitt, M.; Kleinermanns JKChem.
Phys.1996 104, 972.

digits in a completely polyadic manner and generates a reduced (40) Bist, H. D.; Brand, J. C. D.; Williams, D. Rl. Mol. Spectrosc

polyadic number for the remaining numbers by deleting all zeros
was found to be effective. In this way, the state vector

000201000200101201200% 81897404%,

would be reduced to

21211201200§= 1368469,
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